The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface
نویسندگان
چکیده
Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined knockout mutants provided evidence that the CdrA adhesin is a target of LapG in P. aeruginosa. A wspF lapG double mutant was hyper-aggregating and hyper biofilm forming, whereas a wspF lapG cdrA triple mutant lost these phenotypes. In addition, western blot detection of CdrA in culture supernatants and whole-cell protein fractions showed that CdrA was retained in the whole-cell protein fraction when LapG was absent, whereas it was found in the culture supernatant when LapG was present. The finding that CdrA is a target of LapG in P. aeruginosa is surprising because CdrA has no homology to LapA.
منابع مشابه
Controlling the Connections of Cells to the Biofilm Matrix.
The importance of cyclic di-GMP (c-di-GMP) and its control of biofilm matrix assembly and production has been a focal point of researchers in recent history. In this issue, Cooley et al. (Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR, O'Toole GA, Sondermann H, J Bacteriol 198:66-77, http://dx.doi.org/10.1128/JB.00369-15) demonstrate that two c-di-GMP controlled features of Pseudomonas aeru...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملPseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix
Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specific...
متن کاملInhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation
Objective(s): Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs) on biofilm. Materials and Methods: Aft...
متن کاملSerological Classification and Comparison of Cell Surface Hydrophobicity and Biofilm and Proteases Formation between the Clinical and Environmental Isolates of Pseudomonas Aeruoginosa
Background & Aims: Pseudomonas aeruoginosa is an opportunistic pathogen and an important cause of nosocomial infections. Different factors are involved in the pathogenicity of this bacterium. This study was performed to compare some factors associated with the virulence of clinical and environmental isolates of P. aeruoginosa. Methods: The present study was performed on 25 environmental isolate...
متن کامل